СОДЕРЖАНИЕ
Тема 1. Базовые понятия статистики и проверки статистических гипотез 3
5. Коэффициент корреляции. Для чего он применяется 3
Практическое задание 1.1 6
Практическое задание 1.2 10
Тема 2. Парная линейная регрессия 13
5. Как определить ошибки регрессии 13
Практическое задание 2.1 16
Список использованных источников 22
Коэффициент корреляции рангов Спирмена (rs) — это непараметрический показатель, с помощью которого пытаются выявить связь между рангами соответственных величин в двух рядах измерений.
Этот коэффициент рассчитывать проще, однако результаты получаются менее точными, чем при использовании r. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следования данных, а не их количественные характеристики и интервалы между классами.
Дело в том, что при использовании коэффициента корреляции рангов Спирмена (rs) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми. Если коэффициент близок к +1, то это означает, что оба ряда практически совпадают, а если этот коэффициент близок к -1, можно говорить о полной обратной зависимости.
Коэффициент rs вычисляют по формуле:
где d — разность между рангами сопряженных значений признаков (независимо от ее знака), — число пар.
Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распределения слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент r (в этих случаях бывает необходимо превратить количественные данные в порядковые).
Коэффициент корреляции равен квадратному корню коэффициента детерминации , поэтому может применяться для оценки значимости регрессионных моделей.
Очевидно, что если корреляция между переменными высокая, то, зная поведение входной переменной, проще предсказать поведение выходной, и полученное предсказание будет точнее (говорят, что входная переменная хорошо «объясняет» выходную).
Однако, чем выше корреляция наблюдается между переменными, тем очевиднее связь между ними, например, взаимозависимость между ростом и весом людей, однако данное соотношение настолько очевидно, что не представляет интереса.

